

PII: S0960-894X(96)00364-2

THE FIRST SELECTIVE ANTAGONIST FOR A GABAC RECEPTOR

Yoshinori Murata, ¹ Richard M. Woodward, ² Ricardo Miledi, *2 and Larry E. Overman*1

Departments of Chemistry and Psychobiology, University of California, Irvine, CA 92697-2025, U.S.A.

Abstract. (1,2,5,6-Tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA, 1), which is synthesized in six steps from 3-butyn-1-ol, is the first γ-aminobutyric acid (GABA) receptor antagonist that shows strong selectivity for mammalian GABA_C receptors. Copyright © 1996 Elsevier Science Ltd

γ-Aminobutyric acid (GABA) is the most widely distributed inhibitory neurotransmitter in the central nervous system of vertebrates. Agents that influence GABA receptors have pronounced effects on brain function and show demonstrated or potential utility for the treatment of a variety of CNS disorders.³ Three classes of mammalian GABA receptors, denoted GABA_A, GABA_B, and GABA_C, have been well characterized so far. GABA_A receptors are ligand-gated Cl⁻ channels, while GABA_B receptors regulate K⁺ and Ca²⁺ channels through GTP-binding proteins and intracellular messenger pathways.^{4,5} GABA_C receptors were initially defined pharmacologically by their insensitivity to the specific GABA_A receptor antagonist bicuculline and the GABA_B receptor agonist baclofen.⁶ Only recently have GABA_C receptors been studied at the molecular level and, at present, the singular GABA_C receptors with known molecular composition are those found in neurons of the retina. Retinal GABA_C receptors are ligand-gated Cl⁻ channels comprised of homo- or heterodimeric assemblies of ρ1 and ρ2 subunits.⁶ At present, the physiological functions of GABA_C receptors are largely unknown. In this paper we report the synthesis and initial pharmacological characterization of the first selective antagonist for a mammalian GABA_C receptor, (1,2,5,6-tetrahydropyridine-4-vl)methylphosphinic acid (TPMPA, 1).

$$H_3N$$
 $CO_2^ H_2N$
 H_3N
 H_3N
 $GABA$
 $CO_2^ H_2N$
 H_2N
 H_3N
 $GAPMPA$ (2) isoguvacine (3)

The rationale behind the design of TPMPA was as follows. Previous studies had shown that the flexible GABA analogue 3-aminopropyl(methyl)phosphinic acid (3-APMPA, 2) is inactive at GABA_A receptors, is a high potency agonist for GABA_B receptors, and is a potent competitive antagonist of retinal GABA_C receptors (Table 1).^{7,8} In contrast, the semi-rigid GABA analogue isoguvacine (3) is an agonist for GABA_A receptors, is inactive at GABA_B receptors, and is a partial agonist for retinal GABA_C receptors (Table 1).^{7,9} Therefore, we reasoned that the methylphosphinic acid analog of isoguvacine, TPMPA (1), might retain activity as an antagonist for GABA_C receptors, but be weak, or inactive, as a ligand for GABA_A and GABA_B receptors.

The synthesis of TPMPA (1) and its ethylphosphinate analog 4 (TPEPA) is summarized in Scheme 1. 3-Butyn-1-ol (5) was converted to N-benzyl-3-butyn-1-amine (6), 10 which undergoes efficient iodide-promoted intramolecular Mannich cyclization to give 1-benzyl-4-iodo-1,2,5,6-tetrahydropyridine (7). 10,11 Coupling of 7 at elevated temperature with methyl methylphosphinate (8a, R = Me) 12 or methyl

2074 Y. MURATA et al.

ethylphosphinate (8b, R = Et)¹² in the presence of 4 mol % of Pd(PPh₃)₄ and 1,4-diazobicyclo[2.2.2]octane (DABCO) afforded phosphinate derivatives 9a (53%) and 9b (34%).¹³ If 1 mol % of the palladium catalyst was used, coupling did not proceed to an appreciable extent. After considerable experimentation, we found that the benzyl group could be removed and the phosphinic ester cleaved in ~70% overall yield by sequential treatment of 9a or 9b with 2-(trimethylsilyl)ethyl chloroformate, followed by cleavage of the resulting carbamate esters 10 with HBr and HOAc.^{14,15} Purification of the derived amino acids by ion exchange chromatography then provided pure samples of TPMPA (1) and TPEPA (4).

Scheme 1. Synthesis of TPMPA (5a) and TPEPA (5b).

Effects of TPMPA on retinal GABA_C receptors were measured using electrical recording techniques in *Xenopus* oocytes expressing cloned human p1 GABA receptor subunits.^{16,17} TPMPA was a potent competitive inhibitor of p1 GABA_C receptors (Table 1).¹⁸ Unlike imidazole-4-acetic acid, a compound previously reported to selectively interact with retinal GABA_C receptors,¹⁹ TPMPA did not itself activate currents, indicating that it is not a partial agonist/antagonist. TPMPA was >100-fold weaker as an inhibitor of rat brain GABA_A receptors expressed in oocytes, and displayed only weak agonist activity for GABA_B

Table 1. Pharmacology of 3-APMPA, isoguvacine and TPMPA at the three major classes of
mammalian GABA receptors.a

Drug	GABAA	GABA _B	GABAC
3-APMPA	Inactive	Potent agonist (EC ₅₀ ~ 0.2 μM)	Potent antagonist $(K_b = 0.8 \mu M)$
Isoguvacine	Agonist $(EC_{50} = 310 \mu\text{M})$	Inactive	Partial agonist $(EC_{50} = 99 \mu M)$
ТРМРА	Weak antagonist $(K_b = 320 \mu M)$	Weak agonist (EC ₅₀ ~ 500 μM)	Potent antagonist $(K_b = 2.1 \mu M)$

^a Values for 3-APMPA and isoguvacine are taken from references 7-9.

receptors, as assayed by whole cell patch clamp recordings in rat hippocampal slices (Table 1).²⁰ Details of the pharmacological characterization of TPMPA are reported elsewhere.²¹ TPEPA, the ethyl analogue of TPMPA, was also a competitive inhibitor of ρ1 GABA_C receptors, but was ~2-fold less potent than TPMPA. Like TPMPA, TPEPA had only weak inhibitory effects on GABA_A receptors. TPEPA was not tested for actions on GABA_B receptors.

Conclusion. TPMPA is the first GABA receptor antagonist that shows strong selectivity for homomeric human GABA_C receptors composed of $\rho 1$ subunits. Since TPMPA is readily prepared in six steps from commercially available 3-butyn-1-ol, it should be a useful tool for investigating the function of GABA_C receptors in the retina and in other parts of the central nervous system.

Experimental Details for the Synthesis of TPMPA.

Methyl (1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)methylphosphinate (9a). A mixture of $7^{10,22}$ (4.50 g, 15 mmol), methyl methylphosphinate $8a^{12}$ (2.0 g, 21 mmol), 1,4-diazobicyclo[2.2.2]octane (DABCO, 5.1 g, 46 mmol), Pd(PPh₃)₄ (500 mg, 0.5 mmol) and toluene (150 mL) was stirred at 80-90 °C under a N₂ atmosphere for 1 h. The reaction mixture was then concentrated and the residue was purified by column chromatography on silica gel (5:3 to 2:1 CH₂Cl₂:hexane containing 5 % Et₃N) to give phosphinate 9a (2.1 g, 53 %) as a viscous oil: ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.40 (m, 5H, Ph), 6.67 (dd, J = 19.2, 1.2 Hz, 1H, CHC=C), 3.58 (d, J = 5.1 Hz, 3H, OCH₃), 3.55 (d, J = 1.2 Hz, 2H, CH₂Ph), 3.01-3.22 (m, 2H, NCH₂C=C), 2.47-2.68 (m, 2H, CH₂CH₂N), 2.22 (broad s, 2H, NCH₂CH₂), 1.43 (dd, J = 14.4, 0.6 Hz, 3H, CH₃P); ¹³C NMR (75 MHz, CDCl₃) δ 140.6 (d, J = 8.6 Hz), 137.4, 128.8, 128.2 (d, J = 122 Hz), 128.1, 127.0, 62.2, 52.9 (d, J = 14.0 Hz), 50.4 (d, J = 4.5 Hz), 48.6 (d, J = 9.3 Hz), 25.3 (d, J = 9.4 Hz), 12.7 (d, J = 100 Hz); IR (film) 2917, 1645, 1456, 1208, 1038, 894, 700 cm⁻¹; HRMS (CI) m/z 266.1322 (266.1310 calcd for C₁₄H₂₁NO₂P).

(1,2,5,6-Tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA, 1). A solution of 2-(trimethysilyl)-ethyl chloroformate (6.68 g, 37.0 mmol), 9a (6.98 g, 26.4 mmol, previously dried by azeotroping twice with toluene) and dry toluene (30 mL) was maintained under a N₂ atmosphere at room temperature for 12 h. After concentration the resulting residue was purified by column chromatography on silica gel (1:1 to 1.5:1 CH₂Cl₂:hexane containing 5 % Et₃N) to give carbamate 10a (6.39 g, 76%) as a viscous oil.²³

A solution of 10a (6.3 g, 19.8 mmol), 48% HBr (160 mL) and glacial acetic acid (160 mL) was heated at reflux (bath temperature 90-100 °C) for 1 day and then concentrated Toluene (20 mL) was added and the resulting mixture was concentrated to remove residual acid, and this procedure was repeated twice. Saturated aqueous NH₄OH then was added slowly until the solution was basic. The resulting solution was concentrated, additional toluene (20 mL) was added and the solution was again concentrated. The resulting residue was purified by ion exchange chromatography on Dowex 50W (pre-washed 5-6 times with 1 M HCl and then with distilled water until the eluent was neutral). The column was eluted with distilled water (500 mL) and then with a 1:50 to 1:20 mixture of 12 M NH₄OH and distilled water. The early ninhydrin-negative fractions were rejected, and the later ninhydrin-positive fractions were collected and concentrated to give pure 1 (2.96 g, 93%) as a colorless solid: $R_f = 0.52$ (6:6:3:5 BuOH:CH₃COOH:pyridine:H₂O); ¹H NMR (300 MHz, CD₃OD) δ 6.33 (d, J = 17.1 Hz, 1H, CHC=C), 3.30 (t, J = 1.4 Hz, 2H, C=CCH₂N), 3.20 (t, J = 5.9 Hz, 2H, CH₂CH₂N), 2.49 (broad s, 2H, NCH₂CH₂), 1.24 (d, J = 13.8 Hz, 3H, CH₃P); ¹³C NMR (75 MHz, CD₃OD) δ 138.3 (d, J = 121 Hz), 128.6 (d, J = 8.2 Hz), 43.4 (d, J = 13.9 Hz), 41.8 (d, J = 8.4 Hz), 23.3 (d, J = 9.8 Hz), 16.1 (d, J = 9.8 Hz); HRMS (EI) m/z 161.0601 (161.0606 calcd for C₆H₁₂NO₂P).²⁴

Acknowledgment. This investigation was supported by NIH Grants HL-25854 and MH-48358. NMR and mass spectra were determined with spectrometers acquired with the assistance of NSF Shared Instrumentation Grants. We wish to thank Dr. Dennis Holt for providing additional information pertaining to reference 13b.

References and Notes

 Department of Chemistry; current address of Y.M.: Pfizer Pharmaceuticals, Inc., Department of Medicinal Chemistry, 5-2 Taketoyo, Aichi 470-23 JAPAN.

- Department of Psychobiology; current address of R. M. W.: Acea Pharmaceuticals, Inc., A wholly owned subsidiary of CoCensys Inc., Irvine, CA, 92718.
- (a) Bittiger, H.; Froestl, W.; Mickel, S. J.; Olpe, H.-R. Trends Pharmacol. 1993, 14, 391. (b) Gammill, R. B.; Carter, D. B. Ann. Rept. Med. Chem. 1993, 28, 19.
- 4. MacDonald, R. L.; Olsen, R. W. Annu. Rev. Neurosci. 1994, 17, 569.
- 5. Kerr, D. I.; Ong, J. Pharmacol. Therapeu. 1995, 67, 187.
- (a) Polenzani, L.; Woodward, R. M.; Mildei, R. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 4318.
 (b) Cutting, G. R.; Lu, L.; O'Hara, B. F.; Kasch, L. M.; Montrose-Rafizdeh, C.; Donovan, D. M.; Shimada, S.; Antonarakis, S. E.; Guggino, W. B.; Uhl, G. R.; Kazazian, H. H. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2673.
 (c) Bormann, J.; Feigenspan, A. Trends Neurosci. 1995, 18, 515.
 (d) Johnston, G. A. R. In The GABA Receptors; 2nd ed; Enna, S. J., Bowery, N. G., Ed.; Humana: New Jersey, 1996, in press. (e) Salceda, R.; Vazquez, A. E.; Miledi, R. Soc. Neurosci. Abst. 1993, 19, 43.13.
- 7. Woodward, R. M.; Polenzani, L.; Miledi, R. Mol. Pharmacol. 1993, 43, 609.
- 8. Seabrook, G. R.; Howson, W.; Lacey, M. G. Br. J. Pharmacol. 1990, 101, 949.
- 9. Hill, D. R.; Bowery, N. G. Nature (London) 1981, 290, 149.
- 10. Arnold, H.; Overman, L. E.; Sharp, M. J.; Witschel, M. C. Org. Synth. 1992, 70, 111.
- 11. Overman, L. E.; Sharp, M. J. J. Am. Chem. Soc. 1988, 110, 612, 5934.
- 12. Petrov, K. A.; Bliznyuk, N. K.; Studnev, Y. N.; Kolomiets, A. F. Zh. Obshch. Khim. 1961, 31, 179.
- (a) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1980, 21, 3595.
 (b) Holt, D. A.; Erb, J. M. Tetrahedron Lett. 1989, 30, 5393.
- 14. Kozyukov, V. P.; Sheludyakov, V. D.; Miromov, V. F. Zh. Obshch. Khim. 1968, 38, 1179.
- 15. Campbell, A. L.; Pilipauskas, D. R.; Khanna, I. K.; Rhodes, R. A. Tetrahedron Lett. 1987, 28, 2331.
- 16. Shimada, S.; Cutting, G. R.; Uhl, G. R. Mol. Pharmacol. 1992, 41, 683.
- 17. Calvo, D. J.; Vasquez, A. E.; Miledi, R. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12725.
- 18. Woodward, R. M.; Polenzani, L.; Miledi, R. Mol. Pharmacol. 1992, 41, 89.
- (a) Kusama, T.; Spivak, C. E.; Whiting, P.; Dawson, V. L.; Schaeffer, J. C.; Uhl, G. R. Br. J. Pharmacol. 1993a, 109, 200.
 (b) Kusama, T.; Wang, T. L.; Guggino, W. B.; Cutting, G. R.; Uhl, G. R. Eu. J. Pharmacol. 1993b, 245, 83.
- 20. Edwards, F. A.; Konnerth, A.; Sakmann, B.; Takahashi, T. Pflurg. Arch. 1989, 414, 600.
- 21. Ragozzino, D.; Woodward, R. M.; Murata, Y.; Eusebi, F.; Overman, L. E.; Miledi, R. *Mol. Pharmacol.* **1996**, in press.
- 22. Intermediates **6** and **7** were prepared using the general procedure detailed in reference 10. Characterization data for **7**: a yellow oil that rapidly darkened on standing and was used immediately in the next step; IR (film) 2780, 1545, 1384, 1341, 1054, 981, 729, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.40 (m, 5H, ArH), 6.26 (t, *J* = 3.3 Hz, 1H, CHC=C), 3.56 (s, 2H, CH₂Ph), 3.02 (d, *J* = 3.0 Hz, 2H, NCH₂CH), 2.61 (s, 4H, NCH₂CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 137.8, 135.2, 129.1, 128.3, 127.2, 93.1, 62.2, 55.6, 51.6, 39.7; MS (CI) *m/z* 301 (9), 300 (MH, 100), 174 (34); HRMS (CI) *m/z* 300.0251 (300.0254 calcd for C₁₂H₁₅NI).
- 23. Characterization data for **10a**: ¹H NMR (300 MHz, CDCl₃) δ 6.73 (dd, J = 19.2, 1.2 Hz, 1H, CHC=C), 4.18-4.25 (m, 2H, OCH₂), 4.07-4.17 (m, 2H, C=CCH₂N), 3.62 (d, J = 11.1 Hz, 3H, OCH₃), 3.47-3.68 (m, 2H, CH₂CH₂N), 2.21-2.30 (m, 2H, NCH₂CH₂), 1.48 (d, J = 14.1 Hz, 3H, CH₃P), 0.97-1.06 (m, 2H, CH₂CH₂O), 0.04 (s, 9H, (CH₃)₃Si); ¹³C NMR (75 MHz, CDCl₃) δ 155.4, 138.9 (d J = 4.4 Hz), 129.1 (d, J = 124 Hz), 63.7, 50.6 (d, J = 5.8 Hz), 43.9 (d, J = 13.7 Hz), 39.6, 24.4 (d, J = 6.8 Hz), 17.7, 12.7 (d, J = 101 Hz), -1.6; IR (film) 2954, 1699, 1457, 1282, 1236, 1038 cm⁻¹; HRMS (CI) m/z 320.1431 (320.1447 calcd for C₁₃H₂₇NO₄PSi).
- 24. TPEPA (4) was prepared in identical fashion. Characterization data for 4: a colorless solid: $R_f = 0.52$ (6:6:3:5 BuOH-CH₃COOH-pyridine-H₂O): ¹H NMR (300 MHz, CD₃OD) δ 6.34 (d, J = 17.1 Hz, 1H, CHC=C), 3.58 (t, J = 2.4 Hz, 2H, C=CCH₂N), 3.11 (t, J = 5.7 Hz, 2H, CH₂CH₂N), 2.40 (t, J = 2.1 Hz, 2H, NCH₂CH₂), 1.50 (qd, J = 15.0, 7.5 Hz, 2H, CH₃CH₂P), 1.03 (dt, J = 17.4, 7.7 Hz, 3H, CH₃CH₂P); ¹³C NMR (75 MHz, CD₃OD) δ 136.7 (d, J = 117 Hz), 131.3 (d, J = 6.5 Hz), 44.0 (d, J = 13.0 Hz), 42.1 (d, J = 8.1 Hz), 24.3 (d, J = 9.4 Hz), 23.4 (d, J = 97.9 Hz), 7.3 (d, J = 3.8 Hz); HRMS (EI) m/z 175.0759 (175.0762 calcd for C₂H₁₄NO₂P).